
A Blendshape Model that Incorporates Physical
Interaction

Wan-Chun Ma1 Yi-Hua Wang2 Graham Fyffe3 Bing-Yu Chen2 Paul Debevec3

1Weta Digital 2National Taiwan University 3USC Institute for Creative Technologies

Abstract

The linear blendshape technique has been
intensively used for computer animation and
games due to its simplicity and effectiveness.
However it cannot describe rotational deforma-
tions and deformations due to self collision or
scene interaction. In this paper, we present a
new technique to address these two major lim-
itations by introducing physical-based simula-
tion to blendshapes.

The proposed technique begins by construct-
ing a mass-spring system for each blendshape
target. Each system is initialized in its steady
state by setting the rest length of each spring as
the edge length of the corresponding target. To
begin shape interpolation, we linearly interpo-
late the rest lengths of the springs according to
a given interpolation factor α ∈ [0,1]. The in-
terpolated shape is then generated by comput-
ing the equilibrium of the mass-spring system
with the interpolated rest lengths. Results from
our technique show physically-plausible defor-
mations even in the case of large rotations be-
tween blendshape targets. In addition, the new
blendshape model is able to interact with other
scene elements by introducing collision detec-
tion and handling to the mass-spring system.

1 Introduction

The linear blendshape technique is a widely
adopted solution for many applications that re-
quire an efficient geometrical deformation be-
tween two or more input shapes. One such ap-
plications is key frame animation. The shape at

a given frame is obtained by directly interpolat-
ing the shapes from nearby key frames. Another
typical application is facial animation. Various
facial expressions, often referred to as blend-
shape targets or key poses, are modelled as input
shapes. A new shape of a desired expression can
be generated by fully or partially blending those
input shapes. Despite its simplicity, the linear
blendshape technique is still one of the mostly
favored techniques for computer animation.

However, the linear blendshape technique ex-
hibits two major drawbacks. First, the interpo-
lated results usually are degraded when the de-
formation involves large rotations. Figure 1(c)
illustrates a typical “shrinking” artifacts ob-
served when linearly interpolating two shapes
with a large rotation (e.g. bending) presents.
More intermediate shapes can be introduced to
reduce rotational artifacts. This requires ex-
tra time and storage budgets to prepare and
save these shapes however. Second, the lin-
ear blendshape technique also ignores physical
interaction. Any deformation caused by phys-
ical interaction has to be prepared by either
pre-computing a new shape that conforms to
the interaction based on physical simulation, or
imitating the shape manually in a post-editing
process. The former usually is not applica-
ble to general physical interaction since a pre-
computed shape would be needed for every pos-
sible deformation. The later requires experi-
enced digital artists to produce visually pleas-
ant results. For example, Borshukov [7] demon-
strated both concepts.

In this paper we introduce a new physically-
inspired blendshape technique that addresses the
above-mentioned problems. Our method pro-

(a) (b) (c) (d)

Figure 1: A comparison between linear blendshape and our technique. (a) Source shape. (b) Target
shape. (c) Linearly interpolated with α = 0.5. (d) Interpolated by the proposed method with
the same α.

(a) (b) (c) (d) (e) (f)

Figure 2: The proposed technique enables physically-plausible deformation. (a) Source shape. (b)
Target shape. (c-f) Interpolating between the two shapes while interacting with a solid
cylinder.

vides a physical underpinning for shape inter-
polation using mass-spring physics. A key ob-
servation is that the equilibrium state of a mass-
spring system minimizes local area/volume dis-
tortions through force balancing. As a result, lo-
cal rigidity can be maintained as much as pos-
sible during deformation. The underlying mass-
spring system also provides a natural framework
for physical interaction. It can be easily carried
out by applying external forces and additional
constraints based on collision detection.

The proposed method begins with building a
mass-spring system for each input blendshape
targets. The mass-spring system is initialized
to its steady state by setting the rest length of
each spring to the length of the corresponding
edge. We then interpolate the rest lengths of
the springs based on a given interpolation factor
and solve for the equilibrium state of the inter-
polated mass-spring system, where the final ver-
tex positions represent the interpolated shape.
The equilibrium computation is the major cost
of the technique. We demonstrate our blend-
shape technique with a wide variety of shapes
that exhibit complicated geometry and deforma-

tions. The method yields more natural shape in-
terpolations, which can be seen in Figure 1(d).
Figure 2 shows interpolated results while inter-
acting with a scene element.

Contributions. Two substantial contributions in
our work are:

1. An algorithm that creates natural looking
blendshape interpolation results based on
interpolating the rest length of each spring
of a mass-spring system. The proposed
method requires no geometric analysis, ar-
ticulated skeleton, or any manual interven-
tion. Since it does not require a skeleton
to drive the deformation, it is not limited to
articulated shapes.

2. We provide a natural physical interaction
capability, which has not been seen in tra-
ditional shape interpolation techniques, by
applying additional collision detection and
handling. The proposed shape interpola-
tion exhibits correct deformation based on
interaction with other scene elements and
without requiring any pre-computation.

2 Related Work

Our technique relates to works for interpolat-
ing between shapes in two or three dimensions,
mass-spring systems, and rest length animation.

Shape Interpolation and Deformation. Shape
interpolation has been widely used for animat-
ing geometric deformation. The linear blend-
shape technique is the most common method
for shape interpolation. Shape interpolation
can also be achieved using an articulated skele-
ton. The skeleton may be manually speci-
fied [15,35,37], or automatically determined by
finding near-rigid components of input shapes
[11] or using the medial axis transform [6, 38].
Rohmer et al. [27] proposed a skinning method
which exactly preserves (or controls) the volume
of an object.

Other methods are free of using an articu-
lated skeleton. One effective research trend is
based on maintaining the rigidity criteria of lo-
cal geometrical elements, or so-called “as-rigid-
as possible” principle. [1] and [16] are typical
examples of this approach. Baxter et al. [4] pro-
posed a solution for solving the rotation ambigu-
ity arising from previous rigid as-rigid-as possi-
ble approaches. Winkler et al. [36] interpolated
edge lengths and dihedral angles of the input
shapes, followed by a global multi-registration
method to determine the best rigid transforma-
tion.

There are also methods that create shape
interpolation that conforms to user manipula-
tion. Barbič et al. [3] proposed a method for
key frame animation based on an underlying
physically-based simulation, which, similar to
our approach, can also be driven by a mass-
spring system. Both their method and ours com-
pute an equilibrium state as the interpolated re-
sult. However, their method interpolates the de-
formation forces, which are either provided by
a user or computed automatically based on key
poses. Our method simply interpolates spring
rest lengths. Kondo et al. [18] provided guided
animations with dynamics. A user can have con-
trols over trajectory and deformation. Their tar-
get trajectory is not obtained via proper shape
interpolation, but just by pushing the object into
next key frame. Lewis and Anjyo [20] intro-
duced a direct manipulation method for blend-

shapes. This approach constrains any desired
subset of vertices based on manual manipula-
tions and automatically infers the remaining ver-
tex positions. However, the method only pro-
duce shapes that are within the convex space of
the original blendshape poses and has no physi-
cal meaning.

Other related works on shape interpolation
or deformation include [12], which used exam-
ple shapes to build a reduced deformable model
which controls with mesh-based inverse kine-
matics. Galoppo et al. [14] introduced the con-
cept of dynamic morph targets, to skeletally in-
terpolate elastic forces, which allows control
over geometry and elastic properties of an ani-
mated character. Teran et al. [32] solved quasi-
static states of a finite element system for sim-
ulating deformations of nonlinear elastic mate-
rials. We also solve for quasi-static states and
consider interaction with other rigid bodies but
we only balance the mass-spring system with re-
spect to varying the rest lengths.

Lewis et al. [21] regards shape interpola-
tion as a scattered data interpolation problem
in an abstract parameter (pose) space. Our
method does not require high dimensional scat-
tered data interpolation, and it interpolates shape
with the support of physical simulation, pre-
sumably requiring fewer input shapes. Kil-
ian et al. [17] presented an isometric deforma-
tion method based on Riemannian geometry,
considering shape interpolation as a geodesic
curve in shape space. Both of these previous
techniques are unable to provide interaction ca-
pabilities because they lack an underlying phys-
ical approach.

Mass-Spring Systems. Mass-spring systems
are commonly used for simulating physical be-
haviors. Generally, such systems are easy to im-
plement and convenient to integrate with other
techniques, such as collision detection. Applica-
tions that make use of a mass-spring system in-
clude surgical simulation [22], dynamics for an-
imals [23], cloth [2,10,13], muscles [9,24], and
other deformable objects. Lee et al. [19] applied
mass-spring systems to facial animation using a
three-layered mesh to model the anatomy of hu-
man facial tissue. While finite element meth-
ods (FEM) can deliver more sophisticated and
physically accurate analysis, mass-spring sys-

tems are attractive due to their low computa-
tional complexity.

Rest Length Animation. There are works that
simulate muscle activation through controlling
the rest length of each spring in a mass-spring
system. Raibert and Hodgins [26] used rest
length animation to simulate simple leg loco-
motion. Adjusting the rest length changes the
force at each spring so that it is able to initiate or
terminate its motion. Tu and Terzopoulos [33]
constructed a mass-spring system of a fish body,
and assigned some springs to be muscle springs
driven by animated rest lengths. However, these
earlier techniques were not applied to shape in-
terpolation.

3 Blending Shapes with a Mass
Spring System

The proposed blendshape technique consists of
the following two steps:

1. Given a set of input blendshape targets,
we construct a mass-spring system for each
blendshape target based on its structure.

2. We interpolate rest lengths between two or
more aforementioned mass-spring systems
to generate a intermediate mass-spring sys-
tem. The interpolated shape is the quasi-
static state of the intermediate system.

3.1 Structure of the Mass Spring System

It is important to maintain the stability of the
mass-spring system during interpolation, and
this mostly depends on a good spring structure.
Based on [10], we build the mass-spring system
based on input triangulated mesh as a combina-
tion of structure springs and bending springs.
The structure springs model the elastic proper-
ties of the mesh surface, connecting neighboring
vertices. The bending springs define the bending
and flexural properties of the material, and con-
nect a vertex to secondary neighboring vertices
(i.e., at a distance of 2). These bending springs
help maintain the object’s resting shape and pre-
serve surface curvature.

Nevertheless, our experiments show that a
large surface which consists of many small tri-
angles tends to be crumpled during interpolation

G0 G1 G2

(0.70, 0.10, 0.20) (0.33, 0.33, 0.33) (0.12, 0.75, 0.12)

Figure 3: Blending between multiple shapes.
The top row shows three source shapes
and the bottom row shows blended
results with corresponding weights
shown as (w0,w1,w2).

due to insufficient numerical precision. To solve
this problem, we insert additional springs inside
the shape to help preserve volume. We apply
constrained Delaunay tetrahedralization [31] to
determine where to insert these internal springs.
Similar to the mesh refinement step in [1], to
prevent springs with long rest lengths we can
also perform mesh refinement by inserting new
vertices. Those vertices have to be added to all
the input shapes correspondingly. Certain addi-
tional vertices that are inside the input shapes
can be assigned as an anchor as described in
Section 3.4.

A mass-spring systemM= 〈V,S〉 is defined
by a collection of vertices V = {vi|i = 1...nv}
connected by springs S = {sq|q = 1...ns}. Each
spring sq ∈ S connects two vertices veq0 and
veq1 , where eq0 = e(sq,0) and eq1 = e(sq,1) and
function e returns the indices of spring sq’s two
vertices. We enforce 1 ≤ eq0 < eq1 ≤ nv. In
addition, sq is characterized by a rest length
rq = r(sq) and spring constant kq = k(sq), where
functions r and k return the rest length and
spring constant of spring sq, respectively.

3.2 Blending between Two Shapes

We first introduce our technique by explaining
the case of blending between two shapes G0 and

G1. We build two consistent mass-spring sys-
tems M0 = 〈V0,S0〉 and M1 = 〈V1,S1〉 from
G0 and G1. The two mass-spring systems are
initially set to be in their own steady states, i.e.
r0

q =‖ v0
eq0
− v0

eq1
‖ and r1

q =‖ v1
eq0
− v1

eq1
‖. For

each α ∈ [0,1], the interpolated result from the
input shapes is the equilibrium state of a new
mass-spring system M̄= 〈V̄, S̄〉, where for each
spring,

r̄q = (1−α)r0
q +αr1

q. (1)

In an equilibrium state, the force f (vi) at each
vertex vi inM equals zero:

f (vi) = ∑
j∈n(i)

kq(‖vi− v j‖− rq)
vi− v j

‖vi− v j‖
= 0,

(2)
where function n returns the indices of those
vertices that are adjacent to vi, and spring sq

connects vi and v j. Note that the velocity of
each vertex can be ignored since our results are
based solely on quasi-static states. We assume
that each vertex has the same mass, therefore
the mass term can also be ignored. To formulate
Eq. (2) into a linear system, first we vectorize V
into an one dimensional vector x as:

x= [x(v1),y(v1),z(v1), · · · ,x(vnv),y(vnv),z(vnv)]
T ,

where x(vi),y(vi),z(vi) are functions that return
the X, Y and Z Cartesian coordinates of vi. The
system is then solved by using the Newton–
Raphson method to determine the first order ap-
proximation of the optimal vertex configuration:

f (xt+1)≈ f (xt)+ J(xt)∆xt , (3)

where xt+1 = xt +∆xt and J(xt) =
∂ f
∂x (xt) is the

global stiffness (Jacobian) matrix of f evalu-
ated at the current vertex positions xt . When the
system is in its equilibrium state f (xt+1) = 0.
Eq. (3) now becomes:

J(xt)∆xt =− f (xt). (4)

The non-diagonal elements of the global stiff-
ness matrix Ji j are defined by:

Ji j = J ji = kq

(
rq
‖ di j ‖2 I−di jdT

i j

‖ di j ‖3 − I

)
,

where I is an identity matrix, di j = vi− v j, and
spring sq connects vi and v j; or else a 3×3 ma-

trix of zeros if no such a spring exists. The di-
agonal elements (i = j) are defined as:

Jii =− ∑
j∈n(i)

Ji j.

x0 is initialized as the vertex positions of the
source shape V0. We then iteratively solve
Eq. (4) until ‖∆xt‖ is smaller than a threshold
(M̄ reaches its equilibrium). The final vertex
positions are then assigned to V̄ . Generally ma-
trix J is very sparse. There are both iterative
(e.g. conjugate gradient) and direct methods for
solving this sparse linear system.

3.3 Blending Multiple Shapes

The proposed technique can also be extended to
blending multiple shapes by simply considering
the interpolated rest length as a convex linear
combination of the spring rest lengths from the
input shapes:

r̄q =
nb

∑
i=0

wiri
q,

where ∑
nb
i=0 wi = 1. This is illustrated in Fig-

ure 3 where the interpolated shapes (shown in
yellow) are the results of linearly-blended spring
rest lengths from three different input shapes
(shown in blue). Notice that this shares exact the
same formulation for controlling blendshape tar-
gets as as the traditional linear blendshape tech-
nique does.

3.4 Boundary Conditions

Boundary conditions must be specified in order
to solve the equilibrium of a mass-spring sys-
tem. Without boundary conditions, the system
will be under-constrained and the solution will
not be unique. Simply speaking, boundary con-
ditions are vertices which are fixed in a mass-
spring system. In practice, this can be achieved
by assigning Dirichlet boundary conditions to
the global stiffness matrix, i.e., by replacing the
block of the global stiffness matrix correspond-
ing to boundary vertices with an identity ma-
trix. The entries of the boundary vertices in f
are replaced by zeros to enforce that the cor-
responding vertices do not move. A straight-
forward method to assign the boundary condi-
tions is to find vertices which remain static be-
tween the source and target shapes. However,

this is unlikely to apply to general blendshape
targets. Alternatively, certain vertices on the sur-
face can be manually marked as boundary con-
ditions. During the interpolation, the positions
of the marked vertices are then interpolated lin-
early. However, we found that this method often
does not yield visually pleasing results, because
these marked vertices still follow a linear trajec-
tory during interpolation.

Similar to [8], we propose a more general
method which allows all the surface vertices to
move freely is to use an auxiliary object as an
anchor, whose vertex positions act as the bound-
ary conditions. For example, placing a rectangle
around the center of mass of the object would
keep this region fixed through the pose interpo-
lation. We use the following procedure to add
an anchor:

1. Select an anchor position inside the source
shape (Figure 4(a)).

2. When building the structure of the mass-
spring system (as in Section 3), we connect
additional springs to the vertices of the an-
chor. All the springs belonging to the an-
chor are set as hard constraints by setting
a very large spring constant. This enforces
rigidity during the relaxation detailed in the
next step.

3. The rest lengths of the internal springs that
connect surface vertices to the anchor are
computed from the source shape based on
the user-assigned anchor positions. How-
ever, The rest lengths of these surface-
anchor springs in the target shape still re-
mains unknown. We have to determine the
location of the anchor first. One possible
solution is to reverse the roles of anchor
and shape, i.e., we set all the vertices in
the target shape as the boundary conditions,
and copy the rest lengths of the springs
connecting the anchor to the source, then
determine the positions of anchor vertices
within the target shape by solving the equi-
librium.

4. Once the locations of the anchors are
known, we can determine an optimal rigid
transformation T = {R|t} between the an-
chors of the source and target shapes such

(a) (b) (c)

Figure 4: Apply an internal anchor as boundary
conditions. (a) A source shape with
an anchor object (a rectangular plane,
shown in red) inside. (b) The interpo-
lated result. The vertices of the anchor
act as the boundary conditions dur-
ing the spring relaxation, thus allow-
ing free movement of all the surface
vertices. (c) The interpolated result
with a rigid transformation applied.

that p1
i = Rp0

i + t, where p0
i and p1

i are the
positions of the source and target anchors’
vertices, respectively.

5. For each step during the shape interpo-
lation, we move the anchor according to
the linearly-interpolated rigid transforma-
tion T ′ = {q(I,R,α)|αt}, where q is the
function that interpolates the identity ma-
trix I and the rotation matrix R with a
weight α using quaternions [30]. We sub-
sequently fix the interpolated anchor ver-
tices as the boundary conditions and com-
pute the equilibrium state of the mass-
spring system. To improve numerical sta-
bility, we solve for the equilibrium in the
local coordinate frame of the (initial) an-
chor. Afterwards, we reapply the rigid
transformation to both the anchor and the
shape. This is illustrated in Figure 4.

3.5 Spring Constants

The proposed shape interpolation method guar-
antees its results reach both of the input shapes
as rest states of M̄i. However, having a uni-
form spring constant for every spring leads to
the problem that longer springs may have larger
influences at each step of the interpolation (f =
k∆x). To counterbalance this effect, we set the
spring constant to be inversely proportional to

the rest length:

kq ∝
1
rq
.

The strategy ensures every spring, no mat-
ter what its rest length is, contributes similar
amount of force during the interpolation pro-
cess.

4 Physical Interaction

Since the interpolation framework is based
on physical-based simulation (mass-spring sys-
tem), our method is able to physically interact
with other objects during the interpolation. Dur-
ing each interpolation step, we perform colli-
sion detection between the mass-spring system
and obstacles. An axis-aligned bounding box
(AABB) tree structure is built for both objects
to accelerate the detection. The following proce-
dures are executed once collisions are reported:

1. Move the intersecting vertices back to the
surface of the obstacle according to the
penetration normals.

2. Enforce all the intersecting vertices as ad-
ditional boundary conditions. However,
sometimes the deformation might be too
large such that both surface and internal
vertices (as described in Section 3.1) are
involved in the intersection. In this case,
we only use surface vertices as the bound-
ary conditions. The internal vertices never
become fixed due to a collision in order to
preserve the internal structure.

3. Recompute the equilibrium state.

This produces a result which preserves the orig-
inal shape’s features as much as possible, while
respecting to the collision constraints. Figures 2
and 5 show interpolation results while physical
interactions are applied.

5 Results

Figure 6 shows several results (yellow) result-
ing from interpolation of the input shapes (blue).
The supplemental video provides additional ex-
amples of our technique. Our interpolation

Figure 5: Physical interactions. The top row
shows the original interpolation. The
bottom row shows the same interpola-
tion while a vertex is pulled away from
the face. Parts of the mesh boundary
are fixed as boundary conditions.

method is able to produce visually pleasant mo-
tions from just a few example shapes (e.g. the
opening and closing of the hand). It also suc-
cessfully demonstrates physical interaction ca-
pabilities.

Implementation. A sparse matrix solver is re-
quired for Eq. (3). For our implementation
we have tried both the CPU-based PARDISO
[28, 29], and the GPU-based Cusp [5]. SOLID
[34] is used for collision detection. Table 1 lists
the statistics of each shape interpolation. All the
results are generated on a desktop computer with
a 2.66GHz Intel Core 2 Quad CPU, an NVIDIA
Quadro FX 580 GPU, and 3.0GB main mem-
ory. The actual execution time for each Newton–
Raphson step is to a large extent determined by
the complexity of the mass-spring system.

Limitations. A mass-spring system may have
more than one equilibrium. This leads to an el-
ement inversion problem. We found that the el-
ement inversion problem is more likely to occur
if the input shapes originally contains folds due
to self-intersecting triangles.

6 Conclusion and Future Work

In this paper, we presented a new blenshape
technique where the interpolated shape is de-
fined as the equilibrium state of a interpolated

Shape nv ns tCPU tGPU

Man 2.2k 21.6k 2.23 3.62
Face 8.1k 65.1k 40.11 3.67
Cat 7.3k 81.7k 67.58 13.67
Horse 8.5k 96.1k 81.36 15.95
Hand 18.6k 150.4k 153.99 26.28

Table 1: Statistics on the size of the input shapes
and average running time per inter-
polation step (in seconds), assuming
there are 36 steps for the interpolation
between the source and target for all
the experiments. nv: number of ver-
tices (including internal and anchor ver-
tices), ns: number of springs, tCPU : run-
ning time with the PARDISO solver,
tGPU : running time with the Cusp
solver.

mass-spring system. The proposed technique is
fully automatic, requires no additional geomet-
rical analysis or skeleton, and generates physi-
cally plausible shape interpolation with low dis-
tortion of surface area and volume. It also fol-
lows the linear blending control strategy used
in traditional blendshapes. Digital artists who
are familiar with traditional linear blendshape
technique can potentially convert to our method
without much efforts.

Our currently implementation does not
achieve real-time performance, however for
post production use this is not a critical issue.
We are still exploring how to accelerate this
technique. One possible method is to compute
the deformation using a multi-resolution strat-
egy, or to enforce the positive definiteness of
the global stiffness matrix and use a faster con-
jugate gradient solver as described in [32]. Our
current implementation for collision handling is
also very simplified (e.g. let the contact vertices
be fixed by assigning them as the boundary
conditions). Friction force should be considered
for better simulation. We would also like to
investigate the effect of heterogeneous spring
constants analogous to those in [25].

7 Acknowledgement

The authors would like to thank reviewers for
their comments and suggestions. We are also

grateful to the help from J.P. Lewis at Weta Dig-
ital and Jernej Barbič at University of Southern
California during the preparation of this paper.
This research was partially supported by the Na-
tional Science Council, Taiwan under NSC98-
2221-E-002-140-MY2.

References

[1] M. Alexa, D. Cohen-Or, and D. Levin. As-
rigid-as-possible shape interpolation. In
Proceedings of SIGGRAPH 2000, pages
157–164.

[2] D. Baraff and A. Witkin. Large steps in
cloth simulation. In Proceedings of SIG-
GRAPH 1998, pages 43–54.

[3] J. Barbič, M. da Silva, and J. Popović. De-
formable object animation using reduced
optimal control. ACM Transactions on
Graphics, 28(3):1–9, 2009.

[4] W. Baxter, P. Barla, and K. Anjyo. Rigid
shape interpolation using normal equa-
tions. In Proceedings of the 2008 Interna-
tional Symposium on Non-Photorealistic
Animation and Rendering, pages 59–64.

[5] N. Bell and M. Garland. Cusp: Generic
parallel algorithms for sparse matrix and
graph computations, 2010.

[6] J. Bloomenthal. Medial-based vertex de-
formation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 147–
151.

[7] G. Borshukov. Making of the superpunch.
In ACM SIGGRAPH 2005 Courses.

[8] C. Bregler, L. Loeb, E. Chuang, and
H. Deshpande. Turning to the masters:
motion capturing cartoons. In Proceedings
of SIGGRAPH 2002, pages 399–407.

[9] J. E. Chadwick, D. R. Haumann, and
R. E. Parent. Layered construction for de-
formable animated characters. Proceed-
ings of SIGGRAPH 1989, pages 243–252.

Figure 6: Results of shape interpolation using the proposed method. The input shapes are blue, while
interpolated shapes are yellow. Table 1 lists the number of vertices, number of springs, and
timings for each shape.

[10] K.-J. Choi and H.-S. Ko. Stable but re-
sponsive cloth. In Proceedings of SIG-
GRAPH 2002, pages 604–611.

[11] H.-K. Chu and T.-Y. Lee. Multiresolu-
tion mean shift clustering algorithm for
shape interpolation. IEEE Transactions
on Visualization and Computer Graphics,
15(5):853–866, 2009.

[12] K. G. Der, R. W. Sumner, and J. Popović.
Inverse kinematics for reduced deformable
models. ACM Transactions on Graphics,
25(3):1174–1179, 2006.

[13] M. Desbrun, P. Schröder, and A. Barr.
Interactive animation of structured de-
formable objects. In Proceedings of the
Graphics Interface 1999, pages 1–8.

[14] N. Galoppo, M. Otaduy, W. Moss, J. Se-
wall, S. Curtis, and M. Lin. Controlling
deformable material with dynamic morph
targets. In Proceedings of the 2009 Sym-
posium on Interactive 3D Graphics and
Games, pages 39–47.

[15] J. Huang, X. Shi, X. Liu, K. Zhou, L.-
Y. Wei, S.-H. Teng, H. Bao, B. Guo, and
H.-Y. Shum. Subspace gradient domain
mesh deformation. ACM Transactions on
Graphics, 25(3):1126–1134, 2006.

[16] T. Igarashi, T. Moscovich, and J. F.
Hughes. As-rigid-as-possible shape ma-
nipulation. ACM Transactions on Graph-
ics, 24(3):1134–1141, 2005.

[17] M. Kilian, N. J. Mitra, and H. Pottmann.
Geometric modeling in shape space. ACM
Transactions on Graphics, 26(3):1–8,
2007.

[18] R. Kondo, T. Kanai, and K.-i. An-
jyo. Directable animation of elastic ob-
jects. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 127–134.

[19] Y. Lee, D. Terzopoulos, and K. Waters. Re-
alistic modeling for facial animation. In
Proceedings of SIGGRAPH 1995, pages
55–62.

[20] J. P. Lewis and K.-i. Anjyo. Direct ma-
nipulation blendshapes. IEEE Computer
Graphics and Applications, 30(4):42–50,
2010.

[21] J. P. Lewis, M. Cordner, and N. Fong.
Pose space deformation: a unified ap-
proach to shape interpolation and skeleton-
driven deformation. In Proceedings of
SIGGRAPH 2000, pages 165–172.

[22] A. Liu, F. Tendick, K. Cleary, and C. Kauf-
mann. A survey of surgical simulation:
applications, technology, and education.
Presence: Teleoperators and Virtual Envi-
ronments, 12(6):599–614, 2003.

[23] G. S. P. Miller. The motion dynamics of
snakes and worms. pages 169–173.

[24] L. P. Nedel and D. Thalmann. Real time
muscle deformations using mass-spring
systems. In Proceedings of the Computer
Graphics International 1998, pages 156–
165.

[25] T. Popa, D. Julius, and A. Sheffer.
Material-aware mesh deformations. In
Proceedings of the 2006 IEEE Interna-
tional Conference on Shape Modeling and
Applications, page 22.

[26] M. H. Raibert and J. K. Hodgins. Ani-
mation of dynamic legged locomotion. In
Proceedings of SIGGRAPH 1991, pages
349–358.

[27] D. Rohmer, S. Hahmann, and M.-P. Cani.
Exact volume preserving skinning with
shape control. In Proceedings of the 2009
ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 83–
92.

[28] O. Schenk, M. Bollhofer, and R. A. Roe-
mer. On large-scale diagonalization tech-
niques for the Anderson model of localiza-
tion. SIAM Journal on Scientific Comput-
ing, 28(3):963–983, 2006.

[29] O. Schenk, A. Wächter, and M. Hage-
mann. Matching-based preprocessing
algorithms to the solution of saddle-
point problems in large-scale nonconvex

interior-point optimization. Journal of
Computational Optimization and Applica-
tions, 36:321–341, 2007.

[30] K. Shoemake. Animating rotation with
quaternion curves. In Proceedings of SIG-
GRAPH 1985, pages 245–254, 1985.

[31] H. Si and K. Gärtner. Meshing piecewise
linear complexes by constrained delaunay
tetrahedralizations. In Proceedings of the
2005 International Meshing Roundtable,
pages 147–163.

[32] J. Teran, E. Sifakis, G. Irving, and R. Fed-
kiw. Robust quasistatic finite elements
and flesh simulation. In Proceedings of
the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation,
pages 181–190.

[33] X. Tu and D. Terzopoulos. Artificial fishes:
physics, locomotion, perception, behavior.
In Proceedings of SIGGRAPH 1994, pages
43–50.

[34] G. van den Bergen. SOLID: Software li-
brary for interference detection.

[35] O. Weber, O. Sorkine, Y. Lipman, and
C. Gotsman. Context-aware skeletal shape
deformation. Computer Graphics Forum,
26(3):265–274, 2007.

[36] T. Winkler, J. Drieseberg, M. Alexa, and
K. Hormann. Multi-scale geometry in-
terpolation. Computer Graphics Forum,
29(2):309–318, 2010.

[37] H.-B. Yan, S. Hu, R. R. Martin, and Y.-L.
Yang. Shape deformation using a skele-
ton to drive simplex transformations. IEEE
Transactions on Visualization and Com-
puter Graphics, 14(3):693–706, 2008.

[38] S. Yoshizawa, A. G. Belyaev, and H.-P.
Seidel. Free-form skeleton-driven mesh
deformations. In Proceedings of the 2003
ACM Symposium on Solid Modeling and
Applications, pages 247–253.

